IndeCut evaluates performance of network motif discovery algorithms.
نویسندگان
چکیده
Motivation Genomic networks represent a complex map of molecular interactions which are descriptive of the biological processes occurring in living cells. Identifying the small over-represented circuitry patterns in these networks helps generate hypotheses about the functional basis of such complex processes. Network motif discovery is a systematic way of achieving this goal. However, a reliable network motif discovery outcome requires generating random background networks which are the result of a uniform and independent graph sampling method. To date, there has been no method to numerically evaluate whether any network motif discovery algorithm performs as intended on realistically sized datasets -thus it was not possible to assess the validity of resulting network motifs. Results In this work, we present IndeCut, the first method to date that characterizes network motif finding algorithm performance in terms of uniform sampling on realistically sized networks. We demonstrate that it is critical to use IndeCut prior to running any network motif finder for two reasons. First, IndeCut indicates the number of samples needed for a tool to produce an outcome that is both reproducible and accurate. Second, IndeCut allows users to choose the tool that generates samples in the most independent fashion for their network of interest among many available options. Availability The open source software package is available at https://github.com/megrawlab/IndeCut. Contact [email protected], [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.
منابع مشابه
Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences
This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...
متن کاملConstrained Motif Discovery
The goal of motif discovery algorithms is to efficiently find unknown recurring patterns in time series. Most available algorithms cannot utilize domain knowledge in any way which results in quadratic or at least sub-quadratic time and space complexity. For large time series datasets for which domain knowledge can be available this is a severe limitation. In this paper we define the Constrained...
متن کاملEvaluating the Performance of the Location-Aided Routing-1p Route Discovery Algorithm
Dynamic Routing Protocols (DRPs) are widely-used for routing information among mobile nodes in Mobile Ad Hoc Network (MANET) and establish and maintain connectivity within the network. A DRP comprises two main phases: route discovery and route maintenance. The route discovery phase involves transmission of large number of redundant control packets consuming significant portion of the nodes powe...
متن کاملAutomatic Discovery of Technology Networks for Industrial-Scale R&D IT Projects via Data Mining
Industrial-Scale R&D IT Projects depend on many sub-technologies which need to be understood and have their risks analysed before the project can begin for their success. When planning such an industrial-scale project, the list of technologies and the associations of these technologies with each other is often complex and form a network. Discovery of this network of technologies is time consumi...
متن کاملOn Network Tools for Network Motif Finding: A Survey Study
Network motifs have been called the building blocks of networks [1]. Graph theory is used to computationally represent and search networks. Many efforts have been put into developing motif discovery tools to search for and find network motifs, patterns or subgraphs within the input network that occur more frequently in the input network than in randomized networks where patterns occur by chance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره شماره
صفحات -
تاریخ انتشار 2017